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Fast Rigorous Analysis of Shielded Planar Filters
C. J. Railton, Member, IEEE, and S. A. Meade

Abstract—Much interest has been shown by industry and in

the literature regarding the analysis of complex planar com-
ponents such as are found in modern (M) MIC’S. Many of the
published results have, however, required the use of a large

computer. In this contribution a technique is described whereby
rigorous analyses of moderately complex planar circuits may

be obtained on a relatively small desktop computer. Results ob-

tained using a personal computer are presented for several

planar filter geometries. These are in good agreement with pub-

lished results which use more computationally expensive tech-

niques.

INTRODUCTION

T HE REQUIREMENT to predict the behavior of

planar microwave components and circuits has ex-

isted for many years. Recently, however, as the complex-

ity, component density and operating frequencies of these

circuits has increased dramatically, the problems posed to

the designers of CAD tools have become much more dif-

ficult. No longer is it adequate to treat a circuit as a set of

isolated components or to use models based on quasi-static

formulations. The interactions between different parts of

a circuit make it necessary to perform a rigorous full wave

analysis which takes into account all the couplings which

exist. A number of techniques are available which are ca-

pable, in principle, of providing such a rigorous solution

to almost any electromagnetic problem, including the

analysis of microstrip circuits. These include the Spectral

Domain Method [1], [2], [8], [10], Finite Difference Time

Domain [3], [9], [12], Transmission Line Matrix [4],

Bergeron’s Method [5], [11], and Space Domain Methods

[6]. They are, however, all limited by the requirement for

a large amount of computer resources. Notwithstanding

the rapid increase in the availability of computer power,

work is still necessary to increase the efficiency of the

algorithms used. In this contribution, a technique is de-

scribed which is capable of characterizing microwave cir-

cuits, such as filters, using only a small desk-top com-

puter. The technique which is based on the Spectral

Domain Method (SDM), exploits the asymptotic behavior
both of the Green’s function for the shielded slab-loaded

waveguide and of the current distribution in the vicinity

of electrically small geometrical features, such as edges

and comers, in order to speed up the computation and to
reduce the number of unknowns required.
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THE SPECTRAL DOMAIN METHOD

Analyses of complex planar circuits using various im-

plementations of the SDM are well described in the lit-

erature e.g. [1], [2], [7]. In many of these treatments, the

unknown currents on the metal parts of the circuit are ex-

pressed as a linear combination of a set of basis functions,

often rooftop functions. Making use of the slab-loaded

waveguide Green’s function, the unknown current coef-

ficients can be found using the Method of Moments. This

may be done either in the spectral domain or the space

domain [6]. Either approach requires the calculation of

the elements of a large impedance matrix followed by the

solution of the resulting set of simultaneous equations.

Unfortunately, the amount of computer time and memory

required by this process increases very rapidly with the

complexity of the geometry being analysed. This means

that a level of complexity is reached at which it rapidly

becomes impractical to use the SDM in its basic form.

Once this point is reached, means of enhancing the basic

method are essential. This is particularly important in

modem densely packed microwave integrated circuits

where interactions between components cannot satisfac-

torily be ignored. One such enhancement which has al-

ready been described in connection with open structures

[1], [7], is the exploitation of the redundancy inherent in

the impedance matrix in order to reduce the number of

calculations which need to be performed. Recently, the

use of the Fast Fpurier Transform (FFT) has been re-

ported [2] to speed up the calculation of the impedance

matrix elements. In this contribution, the basic method

will be further enhanced in two ways: Firstly the calcu-

lation of the impedance matrix elements is greatly sped

up by using asymptotic forms of both the Green’s func-

tions and the rooftop basis functions, in conjunction with

the FFT. Using this technique, it is necessary to calculate

only five 2-D fast fourier transforms, and this only once

for each geometry. In contrast to this, in [2], twelve 2-D

FFT’s must be calculated for each frequency point. Sec-

ondly, a means will be described for reducing the number
of unknowns in the formulation by using basis functions

which incorporate a priori knowledge of the current dis-

tribution.

FAST CALCULATION OF THE IMPEDANCE MATRIX

The Method of Moments formulated in the spectral do-

main and applied to a planar structure leads to a set of

equations of the following form:

Z a~Z,, = V, for all t (1)
s
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where the elements of the impedance matrix are

Z,r = ~ W,(n, m) G(n, m, u) j,(n, m) (2)
n,m

and the excitation vector is given by

v, = 2 Wt(l’z,r“) Ei(n, “’Z). (3)
n,m

Ei is the incident electric field.

{J. (x, Y)} is the set of current basis functions
{w;(x, y)} is the set of weighting functions

G(u) is the dyadic Green’s function

indicates the Fourier transform and the to-

tal current is given by ,l(x, y) = 2

qJ, (x, Y).

This set of equations may be solved for the unknown cur-

rent in the structure, hence the unknown fields around the

structure may also be found.

Since each element of the Z matrix requires the evalu-

ation of a doubly infinite summation and a typical prob-

lem may involve several hundred unknowns, a means is

required to perform this calculation efficiently. We may

rearrange the characteristic equation by making use of the

asymptotic properties of the Green’s function, described

in [10] for the case of a two layer structure and in [8] for

the case of a three layer structure containing a thin pas-.

sivation layer:

NI h41

Z.t = ~ ~ W,(n, 772)( G(72,m, co)

– G@(n, m)) J,(n, m) + G~2j (4)

where

N2 M2

Z: = ~ ~ W,(n, m) G~(n, m) Y,(n, m)

G@(n, m) = G~G~ is the asymptotic form of the Green’s

function for large n and m and is independent of u, G P

is a function of the geometry and ~~(n, m) is independent

both of geometry and frequency.

The first summation of (4) converges rapidly and,

therefore, few terms of the series need be evaluated. The

summation for Z m is independent of frequency and need

be evaluated only once for each geometry. In spite of this,

since iV2 and M2 must be of the order of 1000 for good

convergence, the calculation of the second summation can

take a prohibitive amount of time and a more efficient

means of evaluation must be found.

For a class of sub-domain basis functions and weight-

ing functions, including the rooftop functions used in [1],

[2], [6], [7], it is possible to express the second summa-

tion in the following form:

(5)

where ~(n, m) is a known function of n and m but not of

s and t, provided that all the basis functions are the same

apart from a spatial translation. The functions T can be

either + Sin or Cos and a and b are the dimensions of the

box (see Fig. l(a)). The derivation of this equation for

the case of rooftop basis functions is given in the appen-

dix.

Equivalently we may say:

z:= z ~(~‘) [Tr(x’:x’))
%(xi+x’))l[t
‘T(nT(y~+y’))l(6)

Thus the problem is reduced to the calculation of sum-

mations of the form:

-m’T(nm(x’:xf))T(mT(y~*y’))‘7)n, m

for all values of the sums and differences of the positions

of the rooftop functions.

Comparing this expression with the two dimensional

DFT we see that all elements in the matrix Z m may be

efficiently calculated using the FFT algorithm provided

we restrict the geomet~ such that:

are integers for alls and t,

in the FFT.

and y, * yt
~(N+l)

where iV is the number of points

In practice, once one has, accepted the restriction of

keeping the finite element sizes the same, this extra re-

striction is not severe.

In order to avoid recalculation of the summations given

by (7) each time the metallization pattern is changed, one

may set up a data file containing the calculated sums for

all possible values of (x, + xl, y, ~ yt ) for a specified box

size and finite element size. For each metallization under

analysis, the required values can be read from the data file

and Z w quickly calculated. We consider it better to store

these values rather than the corresponding values for Z as

described in [7] for the reason that Z m is independent of

frequency, dielectric constant and thickness and the num-

ber of dielectric layers. Moreover the storage requirement

for multilayered structures is no greater than for a single

dielectric if Za’ is stored. This is not the case if Z is stored.
The penalty irn having to recalculate the first summation

in (2) is not great since iV1 and Ml may be as low as 20.

We are now in a position to calculate the elements of

Zm. First the two dimensional DFT’s of the functions ~(n,

m) are calculated using the FFT algorithm, secondly the

elements of Z m are evaluated using (8):
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Fig. 1. (a) Plan of a boxed hairpin resonator. (b) Elevation of a boxed hairpin resonator.
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ANALYSIS OF A HAIRPIN RESONATOR

In order to demonstrate the efficiency obtainable by us-

ing this method of calculating the Z matrix, the hairpin

resonator geometry shown in Fig. 1 was investigated. This

type of resonator is well suited for the construction of

miniature band-pass filters at X band and below. Because

of the strong interaction between the different parts of the

structure, however, the results obtainable from the widely

used microwave CAD tools are likely to be unreliable.

The dimensions used were as follows: 11 = 12 = 4 mm,

w = 1 mm, t = 1.27 mm, h = 12.7 mm. The effect on

the resonant frequency of the hairpin resulting from vary-

ing the dimensions a and b of the enclosing box was in-

vestigated. This is of interest since it shows how small an

enclosure may be used without significantly altering the

behavior of the resonator. In addition the convergence of

the result as the number of finite elements was increased

was investigated.

Fig. 2 shows the calculated resonant frequency of a
hairpin resonator having the geomet~ of Fig. 1 for var-

ious sizes of the enclosing box and for various numbers

of finite elements. For comparison, the same structures

were analysed using the Finite Difference Time Domain

(FDTD) method [9] which has been shown to be a reliable

and accurate full-wave technique for the analysis of planar
components. It can be seen that there is very good agree-

ment between the methods. The results for this structure

were also obtained using a widely available commercial

microwave CAD tool and were found to be approximately

10% in error. This is almost certainly due to the effect of

the coupling between the two right angle corners which is
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Fig. 2. Convergence of the SDM for various box sizes.

ignored in the CAD tool but included automatically in the

SDM and the FDTD methods. This emphasizes the im-

portance of using a rigorous analysis even for components

as comparatively simple as the hairpin resonator at 6.5

GHz. Although the computer time to analyse this struc-

ture is still significant, it nonetheless represents an im-

provement over the basic method of at least an order of

magnitude for a given accuracy.

It is noted that the convergence pattern for the SDM is

oscillatory. This is due to the fact that the nature of the

approximation is different depending on whether an even

or an odd number of rooftop functions are used to describe

the transverse variation of current.
We can see that, for this structure, a very large number

of finite elements is required for convergence. It is noted

that the convergence curves are oscillatory. This is be-

cause the situation where there is an even number of ele-

ments across the track is different from that where there

is an odd number. We can also see that, the convergence

curves are very nearly parallel, hence the error due to fi-

nite element size is almost independent of the size of the

box. Similar effects have been previously observed [9],

and can be explained physically by the fact that the cur-

rent distribution on the metal does not depend greatly on

the surrounding geometry unless strong coupling exists.
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This fact may be exploited in a number of ways to further

increase efficiency and allow the analysis of more com-

plex structures’ such as multi-element filters.

USE OF PRE-COMPUTED BASIS FUNCTIONS

A plot of the calculated current distribution for the first

resonant mode of the hairpin is shown in Fig. 3. No

smoothing has been applied, hence the apparent discon-

tinuities of current density in the transverse directions. It

can be seen that the current distribution is dominated by

the effects of the edges and the corners. These effects are

insensitive to the environment. We can make use of the

relative invariance of the current distribution in order to

greatly speed up the calculations described in the previous

section as well as allowing the solution of much more

complicated problems. Although this phenomenon has

been widely exploited for two dimensional analyses, e.g.,

[10], where analytical expressions for the distributions are

available, it has rarely been used in conjunction with a

three dimensional analysis and, to the authors’ knowl-

edge, never with the generality of the present approach.

For a structure such as the hairpin, we can expand the

unknown current as a linear combination of its resonant

modes:

J(r) = j, b, ~, (r) (9)

where 4P(r) is the current distribution associated with the

pth resonant mode. For most cases of practical interest

the summation can be truncated after only a few terms, in

some cases only one term is required. From the finite ele-

ment method we can find these distributions as a linear

combination of the original rooftop basis functions:

+,(r) = ,~1a,, R, (r) (lo)

where Rq(r) is the qth rooftop function as defined in the

appendix. ~ is the total number of finite elements in the

basic analysis and can be of the order of hundreds. Alter-

natively, for some structures, *P may be known analyti-

cally. In these cases the set {aP } can be calculated using

a least squares approximation.

The total current is therefore given by

J(r) = ; ~ bPaPqRq(r). (11)
Pq

The coefficients, aPq, are calculated once for each hairpin

geometry, thereafter we need only calculate the much
smaller number of b’s. The size of the impedance matrix

for these subsequent cases is only 2S x 2S and the matrix

may therefore be solved with great rapidity. Because we

have expressed { +P ] as a linear combination of rooftop

functions, the elements of the asymptotic Z matrix can be

expressed as follows:
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9,0 9.0

80 8.0

7,0 7,0

GO 6.0

5,0 5,0
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Fig. 3. Current distribution of the first resonant mode of a hairpin reso-

nator.

“Ktx(xp:xq))+f-p:xq))l
“[T(nT(yp~yq))+T(nm(yp:

(12)

which, as before, can be expressed as a summation of

terms of the form of (7). Thus full advantage can be taken

of the method described in the appendix to efficiently cal-

culate the Z matrix.

Consider the structure shown in Fig. 4. This is a pair

of hairpin resonators such as may form part of a miniature

bandpass filter.

In this case we use basis functions as follows:

J(r) = z bpl~,(r + rl) + Z b,~~,(r + r~) (13)
P P

where r, and rz are the positions of hairpins one and two

relative to the position of the hairpin used to calculate

{4, }. The size of the impedance matrix for the complete
circuit is still only 4S X 4S.

For filter design, we need to know both the resonant

frequency of the individual elements and also the cou-

pling coefficient as a function of the separation, s. The

latter may be calculated from a knowledge of the resonant

frequencies of the even and odd modes of the coupled

resonators. Since we are only considering the response of

the circuit close to the fundamental resonances, we need

only take a single term in the sums of (13). Fig. 5 shows

the results using the pre-calculated basis functions com-
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Fig. 4. Coupled hairpin resonators.
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Fig. 5. Resonant frequencies of two coupled hairpin resonators as a func-
tion of separation.

pared with similar results calculated using the basic SDM

using 234 elements and results obtained using the FDTD

technique [12]. It can again be seen that there is good

agreement between the methods of better than 1 % in the

absolute resonant frequency and excellent agreement in

the coupling coefficient. It is noted that, due to the small

size of the enclosure, there is interaction between the

resonators and the box which results in the plots of the

resonant frequencies of the even and odd modes crossing

when the resonators are widely separated.

THE ANALYSIS OF AN EDGE COUPLED BAND

PASS FILTER

Consider the filter shown in Fig. 6. In the literature

results for this filter are available from measurements per-

formed by Shibata et al. [1 1], from a quasi-static analysis

and from a rigorous analysis based on Bergeron’s method
[1 1]. In addition results are available from a rigorous

analysis based on the FDTD method [12]. This structure

has been analyzed using the present method in order to

assess the efficiency and accuracy obtainable.

The analysis is approached in three stages.

i) The transverse current distribution on the three mi-

crostrip lines is pre-calculated. This is carried out using a

2-D version of the technique. From this we get the trans-

verse current distribution in the form shown in (10).

ii) We now consider the microstrip resonator in isola-

tion and we use the technique to calculate the longitudinal

current distributions corresponding to the first few reso-

a
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Fig. 6. (a) Plan of boxed edge-coupled bandpass filter. (b) Elevation of

boxed filter. 1, = 6.36 mm, 12 = (b/2) = 8.48 mm, a = 11.62 mm.

nant modes. In this calculation we use the transverse cur-

rent distribution derived in step 1. The resulting current

distributions are shown in Fig. 7. These form the basis

functions, +P (r) in (10), used to describe the microstrip

resonator in the next stage.

iii) Now the complete structure is analyzed. The trans-

verse current distribution on the feed lines is assumed to

be the same as that obtained in stage 1 and the current

distribution on the resonator is expanded as a linear com-

bination of the functions, obtained in stage 2. Note that

only 3 basis functions (Q = 3 in (10)) are required to fully

describe the strip resonator over the frequency range of

interest. Moreover, if we wished to consider an n element

filter we would require only 3n basis functions. Moreover

stages one and two need be carried out only once per res-

onant structure.

In total, 67 basis functions (~ = 67 in (9)) are required

for the structure shown in Fig. 6. In contrast to this, 333

rooftop functions would be required in the basic method

for equivalent accuracy. This allows a large saving in

computation time per frequency. The run time on a Gould

NP1, using non-optimized code, of approximately 15 min

to calculate Zm, (8), and a further, 80 s to calculate

S-parameters at each spot frequency was measured. These
computer times indicate that it is entirely ,practicable to

carry out optimization on a multi-stage filter.

Fig. 8 shows the results, which we have obtained, for

mag [S21] plotted against frequency. For comparison the

measured results of Shibata et al. [1OC tit] for the corre-

sponding open structure are also plotted. A frequency

shift, from the measured reference, of approximately 0.1

GHz is evident and also a higher predicted rejection be-

low 4 GHz. The offset in the resonant frequencies is due

to the fact that the shielding enclosure is not taken into

account in reference [11]. To show that these discrepan-

cies are indeed due to the shield walls we calculated the
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(a) (d)

(b) (e)

(c) (f)

Fig. 7. Current distributions for the first three resonant modes of a strip

resonator. (a)-(c): y-directed current. (d)-(f): corresponding x-directed.

o

-lo

-20

-30 ,

,/
; -40
~

s

s’ -/’

E -60 L

-80 I I I I t I I I I I I I I I
012345678 9 10 11 12 13

Frequency (GHz)

this research measured(n)
------

Fig. 8. S-parameter l,S211 foredge coupled filter.

Frequency (GHzJ

FDTD (open) measured (1)
-.-e---- ------

FDTD (sh!elded) thrs research
-.-A----
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S-parameters for both open and partially shielded (cover

and side walls only) structures using the FDTD method

[12]. Fig. 9 shows a plot of mag [S21] over the frequency

range 3 GHz to 6 GHz, which includes the first resonant

peak. The results predicted by the FDTD for the open

structure is close to the measured [11] whereas the cor-

responding results for the shielded structure agrees more

closely with the predictions of this research. Any further

discrepancies could be explained by the proximity of the

end walls which are not included in the FDTD model or

the measurements, and by the limited frequency resolu-

tion available from the FDTD model.

CONCLUSION

We have shown that realistically complex microstrip

circuits can be rigorously analysed on a small computer

by means of the spectral domain technique in combination

with pre-computed basis functions and the use of the

asymptotic forms of the Green’s function and the FFT

algorithm. The results compare well with published- mea-

surements and with calculations using the FDTD method.

APPENDIX

CALCULATION OF THE ASYMPTOTIC Z MATRIX

The rooftop basis functions can be expressed as fol-

lows:

Jxn(x, y)= 1 – \x–xnl/lx Xn–lx<x<xn+lx

Yn–ly<Y<Yr2+ly

= o otherwise

Jyn(x, y) = ly–yn//ly Xn –lx<x<xn+lx

Y1l’-ly<Y<Yn+ly

. 0 otherwise

where x., y~ are the coordinates of the center of the nth

element and lX, lY are the sizes of each finite element.

Their two dimensional discrete fourier transforms are

J.. (n, m) = ~ Cos curn(l – Cos LYlx)
a .131X

“ Sin @yn Sin (31Y

.7Yn(n, m) =
4

— Cos pyn (1 – Cos ply)
cYp21y

“ Sin f-Yx. Sin CYIX

where a = n~/a and f? = m~/b.
Now:

~z = ~ Gti(n, in) Ji. (n, m, x,, Y.) ~t(m m, xt, yt)

where i and j represent the directions x or y depending on

which component of the dyadic is required and the com-
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ponents of the asymptotic Green’s dyadic is given by [8]:

&3&= fi’k~ a’

z~ = 2(a’+&)3/’ -(+& )&(1/’(l +6)

&@ O=_ afl

Z() ‘y (cY2+p2)’/2(l +6)

k)y= a’k; b’

Zo ‘y 2(a2+f?’)3/’ -(cY2+62(1/’(l +6)

Taking the first quadrant of 2 m, which corresponds to the

xx component of the dyadic, as an example we get:

where

P = Cos ax, Sin ~y, Cos CYXtSin ~yf

Qn, = &(1 – Cos U1.)2 Sin2 (31Y~~,(CY, 6)

QXX2= &(1 – COS CXL)2 Sin2 L34G(cL 6)

K;, = D’
(CY2+ /32)3/2

Rearranging we have

P = 0.25(COS u (X$

and

2

‘:’ = (CY2 ;(3’)’/2

+ x,) + Cos CY(x, – x,))

rhis is the sum of four terms each of the two dimensional

discrete fourier transforms of Ql(n, m) and Q2(n, m) pro-

vided that

u: (N + 1) and v; (N + 1)—
a b

are integers for all s and t.

In a similar manner we find the other quadrants of Z as

follows:

Z; is given by

(

m~v$~
J.y ~ – Q.y (n, m) COS :$ COS ~

+ mm~~
+ ~ Qxy(n, m) Cos ‘~~ Cos ~

– ~ QXY(n, m) Cos :$ Cos W

—
mxv$~

+ ~ Qxy(n, m) Cos ~~ CoS ~
)

Z; is given by

(
‘YY1 ~ – (2Yyl(% m) cOS –‘:~ Cos +

a

+ mxv$~
+ ~ QYY1(n., m) Cos ~~ COS~

– ~ Qyyl(n, m) Cos ‘~~ Cos %

.— m~v$~
+ ~ QyY1(n,m) Cos ~~ COS--j-

)

(

m~v$~
“JYY2x – QyyZ(n, m) Cos’~ Cos ~

+
mxv,;

+ ~ Qyy2(n, m) Cos ~> Cos -j--

– ~ Qyyz(n, m) Cos ~~ Cos %

— —
+ ~ Qyy2(n, m) Cos ~~ COSW

)
where

JXY= k;/2

Q,y= 3: (1 – Cos al.) Sin 61,(1 – Cos f?ly)
a (1 lxly

“ Sin CYIXK~(a, @

K;=–
CYb

(cl’ + p2)l/’
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JYY1= –k;/2 .IYYZ= 1/(1 +c)

Q,,’ ‘A(1 -cosBl,)2sin2~l~~E~(~,B)

CY2
K;l =

b’
and K~2 =

(a’ + f?2)3/2 (a’ + 62)’/2”

Thus, by calculating the two dimensional FFT of the five

functions Q, which are independent of the metallisation

of the circuit under investigation, we may speedily. cal-

culate all the elements of Z m.
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