978 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES. VOL. 40, NO. 5, MAY 1992

Fast Rigorous Analysis of Shielded Planar Filters

C. J. Railton, Member, IEEE, and S. A. Meade

Abstract—Much interest has been shown by industry and in
the literature regarding the analysis of complex planar com-
ponents such as are found in modern (M)MIC’s. Many of the
published results have, however, required the use of a large
computer. In this contribution a technique is described whereby
rigorous analyses of moderately complex planar circuits may
be obtained on a relatively small desktop computer. Results ob-
tained using a personal computer are presented for several
planar filter geometries. These are in good agreement with pub-
lished results which use more computationally expensive tech-
niques.

" INTRODUCTION

HE REQUIREMENT to predict the behavior of

planar microwave components and circuits has ex-
isted for many years. Recently, however, as the complex-
ity, component density and operating frequencies of these
circuits has increased dramatically, the problems posed to
the designers of CAD tools have become much more dif-
ficult. No longer is it adequate to treat a circuit as a set of
isolated components or to use models based on quasi-static
formulations. The interactions between different parts of
a circuit make it necessary to perform a rigorous full wave
analysis which takes into account all the couplings which
exist. A number of techniques are available which are ca-
pable, in principle, of providing such a rigorous solution
to almost any electromagnetic problem, including the
analysis of microstrip circuits. These include the Spectral
Domain Method [1], [2], [8], [10], Finite Difference Time
Domain [3], [9], [12], Transmission Line Matrix [4],
Bergeron’s Method [5], [11], and Space Domain Methods
[6]. They are, however, all limited by the requirement for
a large amount of computer resources. Notwithstanding
the rapid increase in the availability of computer power,
work is still necessary to increase the efficiency of the
algorithms used. In this contribution, a technique is de-
scribed which is capable of characterizing microwave cir-
cuits, such as filters, using only a small desk-top com-
puter. The technique which is based on the Spectral
Domain Method (SDM), exploits the asymptotic behavior
both of the Green’s function for the shielded slab-loaded
waveguide and of the current distribution in the vicinity
of electrically small geometrical features, such as edges
and comners, in order to speed up the computation and to
reduce the number of unknowns required.
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THE SPECTRAL DOMAIN METHOD

Analyses of complex planar circuits using various im-
plementations of the SDM are well described in the lit-
erature e.g. [1], [2], [7]. In many of these treatments, the
unknown currents on the metal parts of the circuit are ex-
pressed as a linear combination of a set of basis functions,
often rooftop functions. Making use of the slab-loaded
waveguide Green’s function, the unknown current coef-
ficients can be found using the Method of Moments. This
may be done either in the spectral domain or the space
domain [6]. Either approach requires the calculation of
the elements of a large impedance matrix followed by the
solution of the resulting set of simultaneous equations.
Unfortunately, the amount of computer time and memory
required by this process increases very rapidly with the
complexity of the geometry being analysed. This means
that a level of complexity is reached at which it rapidly
becomes impractical to use the SDM in its basic form.
Once this point is reached, means of enhancing the basic
method are essential. This is particularly important in
modern densely packed microwave integrated circuits
where interactions between components cannot satisfac-
torily be ignored. One such enhancement which has al-
ready been described in connection with open structures
[1], [7], is the exploitation of the redundancy inherent in
the impedance matrix in order to reduce the number of
calculations which need to be performed. Recently, the
use of the Fast Fourier Transform (FFT) has been re-
ported [2] to speed up the calculation of the impedance
matrix elements. In this contribution, the basic method
will be further enhanced in two ways: Firstly the calcu-
lation of the impedance matrix elements is greatly sped
up by using asymptotic forms of both the Green’s func-
tions and the rooftop basis functions, in conjunction with
the FFT. Using this technique, it is necessary to calculate
only five 2-D fast fourier transforms, and this only once
for each geometry. In contrast to this, in [2], twelve 2-D
FFT’s must be calculated for each frequency point. Sec-
ondly, a means will be described for reducing the number
of unknowns in the formulation by using basis functions
which incorporate a priori knowledge of the current dis-
tribution.

FAsT CALCULATION OF THE IMPEDANCE MATRIX
The Method of Moments formulated in the spectral do-
main and applied to a planar structure leads to a set of
equations of the following form:

XaZ,=V, forallt (1)
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where the elements of the impedance matrix are
Z, = 2 W, m G, m, &) J(,m) ()

and the excitation vector is given by

V.= 2 w,(n, m) E(n, m). (3)
E; is the incident electric field.
{J;(x, )} is the set of current basis functions
{w,(x, )} 1is the set of weighting functions
G(w) is the dyadic Green’s function’

indicates the Fourier transform and the to-
tal current is given by J(x, y) = L
aS JS (x’ y) M

This set of equations may be solved for the unknown cur-
rent in the structure, hence the unknown fields around the
structure may also be found.

Since each element of the Z matrix requires the evalu-
ation of a doubly infinite summation and a typical prob-
lem may involve several hundred unknowns, a means is
required to perform this calculation efficiently. We may
rearrange the characteristic equation by making use of the
asymptotic properties of the Green’s function, described
in [10] for the case of a two layer structure and in [8] for

the case of a three layer structure containing a thin pas--

sivation layer:

N1 M
Z, = 2 2w, m) (G, m, )

- G*(n, m) J;(n, m) + GYZ; cy
where

N2 M

zi =2 2 w,(n, m) G (n, m) J(n, m)

G*(n, m) = GY G5 is the asymptotic form of the Green’s
function for large n and m and is independent of w, GT
is a function of the geometry and G5’ (n, m) is independent
both of geometry and frequency.

The first summation of (4) converges rapidly and,
therefore, few terms of the series need be evaluated. The
summation for Z% is independent of frequency and need
be evaluated only once for each geometry. In spite of this,
since N, and M, must be of the order of 1000 for good
convergence, the calculation of the second summation can
take a prohibitive amount of time and a more efficient
means of evaluation must be found.

For a class of sub-domain basis functions and weight-
ing functions, including the rooftop functions used in [1],
[21, [6], [7], it is possible to express the second summa-

tion in the following form:
nay,
) ()

. T<f”r_x'> T<m> )
a b

Z2 = 21 F(n, m T<

nTX
a

where F(n, m) is a known function of » and m but not of
s and ¢, provided that all the basis functions are the same
apart from a spatial translation. The functions T can be
either £Sin or Cos and a and b are the dimensions of the
box (see Fig. 1(a)). The derivation of this equation for
the case of rooftop basis functions is given in the appen-
dix.
Equivalently we may say:

Z;;to - Z F(n, m) {T<n7r(xs - xt)>

n,m 4 a

+ T<n7r(xs + xt)>}{T<n7r(ys - yt)>
a b
+TCm02+xv} (@

Thus the problem is reduced to the calculation of sum-
mations of the form:

Zﬂmchﬂﬁim>d%ﬂﬁim>(ﬂ

for all values of the sums and differences of the positions
of the rooftop functions.

Comparing this expression with the two dimensional
DFT we see that all elements in the matrix Z% may be
efficiently calculated using the FFT algorithm provided
we restrict the geometry such that:

+
ys;)’t(N+1)

+ .
LA (N + 1) and
a

are integers for all s and ¢, where N is the number of points
in the FFT. '

In practice, once one has accepted the restriction of
keeping the finite element sizes the same, this extra re-
striction is not severe.

In order to avoid recalculation of the summations given
by (7) each time the metallization pattern is changed, one
may set up a data file containing the calculated sums for
all possible values of (x; + x,, ¥, + y;) for a specified box
size and finite element size. For each metallization under
analysis, the required values can be read from the data file
and Z* quickly calculated. We consider it better to store
these values rather than the corresponding values for Z as
described in [7] for the reason that Z® is independent of
frequency, dielectric constant and thickness and the num-
ber of dielectric layers. Moreover the storage requirement
for multilayered structures is no greater than for a single
dielectric if Z* is stored. This is not the case if Z is stored.
The penalty in having to recalculate the first summation
in (2) is not great since N, and M; may be as low as 20.

We are now in a position to calculate the elements of
Z®. First the two dimensional DFT’s of the functions F(n,
m) are calculated using the FFT algorithm, secondly the
elements of Z“ are evaluated using (8):
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Fig. 1. (a) Plan of a boxed hairpin resonator. (b) Elevation of a boxed hairpin resonator.

ANALYSIS OF A HAIRPIN RESONATOR

In order to demonstrate the efficiency obtainable by us-
ing this method of calculating the Z matrix, the hairpin
resonator geometry shown in Fig. 1 was investigated. This
type of resonator is well suited for the construction of
minijature band-pass filters at X band and below. Because
of the strong interaction between the different parts of the
structure, however, the results obtainable from the widely
used microwave CAD tools are likely to be unreliable.
The dimensions used were as follows: [, = [, = 4 mm,
w=1mm, ¢t = 1.27 mm, » = 12.7 mm. The effect on
the resonant frequency of the hairpin resulting from vary-
ing the dimensions a and b of the enclosing box was in-
vestigated. This is of interest since it shows how small an
enclosure may be used without significantly altering the
behavior of the resonator. In addition the convergence of
the result as the number of finite elements was increased
was investigated.

Fig. 2 shows the calculated resonant frequency of a
hairpin resonator having the geometry of Fig. 1 for var-
ious sizes of the enclosing box and for various numbers
of finite elements. For comparison, the same structures
were analysed using the Finite Difference Time Domain
(FDTD) method {9] which has been shown to be a reliable
and accurate full-wave technique for the analysis of planar
components. It can be seen that there is very good agree-
ment between the methods. The results for this structure
were also obtained using a widely available commercial
microwave CAD tool and were found to be approximately
10% in error. This is almost certainly due to the effect of
the coupling between the two right angle corners which is
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Fig. 2. Convergence of the SDM for various box sizes.

ignored in the CAD tool but included automatically in the
SDM and the FDTD methods. This emphasizes the im-
portance of using a rigorous analysis even for components
as comparatively simple as the hairpin resonator at 6.5
GHz. Although the computer time to analyse this struc-
ture is still significant, it nonetheless represents an im-
provement over the basic method of at least an order of
magnitude for a given accuracy.

It is noted that the convergence pattern for the SDM is
oscillatory. This is due to the fact that the nature of the
approximation is different depending on whether an even
or an odd number of rooftop functions are used to describe
the transverse variation of current.

We can see that, for this structure, a very large number
of finite elements is required for convergence. It is noted
that the convergence curves are oscillatory. This is be-
cause the situation where there is an even number of ele-
ments across the track is different from that where there
is an odd number. We can also see that, the convergence
curves are very nearly parallel, hence the error due to fi-
nite element size is almost independent of the size of the
box. Similar effects have been previously observed [9],
and can be explained physically by the fact that the cur-
rent distribution on the metal does not depend greatly on
the surrounding geometry unless strong coupling exists.
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This fact may be exploited in a number of ways to further
increase efficiency and allow the analysis of more com-
plex structures such as multi-element filters.

Use oF PrRE-CoMPUTED Basis FUNCTIONS

A plot of the calculated current distribution for the first
resonant mode of the hairpin is shown in Fig. 3. No
smoothing has been applied, hence the apparent discon-
tinuities of current density in the transverse directions. It
can be seen that the current distribution is dominated by
the effects of the edges and the corners. These effects are
insensitive to the environment. We can make use of the
relative invariance of the current distribution in order to
greatly speed up the calculations described in the previous
section as well as allowing the solution ‘of much more
complicated problems. Although this phenomenon has
been widely exploited for two dimensional analyses, e.g.,
[10], where analytical expressions for the distributions are
available, it has rarely been used in conjunction with a
three dimensional analysis and, to the authors’ knowl-
edge, never with the generality of the present approach.
For a structure such as the hairpin, we can expand the
unknown current as a linear combination of its resonant
modes:

P
I = 2 byip® ©)

where ¢, (r) is the current distribution associated with the
pth resonant mode. For most cases of practical interest
the summation can be truncated after only a few terms, in
some cases only one term is required. From the finite ele-
ment method we can find these distributions as a linear
combination of the original rooftop basis functions:

Q.
Y, = Z] a, R, (1)

q=

(10)

where R, (r) is the gth rooftop function as defined in the
appendix. Q is the total number of finite elements in the
basic analysis and can be of the order of hundreds. Alter-
natively, for some structures, ¥, may be known analyti-
cally. In these cases the set {a,} can be calculated using
a least squares approximation.

The total current is therefore given by

P Q
J(r) = 2 2 b,a, R, (1. (11)
P 4

The coefficients, a,,, are calculated once for each hairpin
geometry, thereafter we need only calculate the much
smaller number of b’s. The size of the impedance matrix
for these subsequent cases is only 25 X 2§ and the matrix
may therefore be solved with great rapidity. Because we
have expressed {y,} as a linear combination of rooftop
functions, the elements of the asymptotic Z matrix can be

expressed as follows:

Soocooobooob:

Z AXIS wi07!
¥ AXIS 1073 X AX1S #1073

=3
°

NO—-NLAADNODDS
00000000000
ANOAODND D=

z ax1s x10”!

- -3
Y AxIs x1073 X AXIS %10

Fig. 3. Current distribution of the first resonant mode of a hairpin reso-
nator.

.{{T<nr@p-.@>>_FT<nw@%+.%)>}
a a

Y n7r(yp - yq) n1r(y,, + yq)
(=)« ()]

(12)

which, as before, can be expressed as a summation of
terms of the form of (7). Thus full advantage can be taken
of the method described in the appendix to efficiently cal-
culate the Z matrix. :

Consider the structure shown in Fig. 4. This is a pair
of hairpin resonators such as may form part of a miniature
bandpass filter. ‘

In this case we use basis functions as follows:

J@r) = §b,,1¢p<r +r) + §-b,,2¢,,(r +r) (13)

where r; and r, are the positions of hairpins one and two
relative to the position of the hairpin used to calculate
{¥, }. The size of the impedance matrix for the complete
circuit is still only 45 X 4S§.

For filter design, we need to know both the resonant
frequency of the individual elements and also the cou-
pling coefficient as a function of the separation, s. The
latter may be calculated from a knowledge of the resonant
frequencies of the ‘even and odd modes of the coupled
resonators. Since we are only considering the response of
the circuit close to the fundamental resonances, we need
only take a single term in the sums of (13). Fig. 5 shows
the results using the pre-calculated basis functions com-
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Fig. 5. Resonant frequencies of two coupled hairpin resonators as a func-
tion of separation.

pared with similar results calculated using the basic SDM
using 234 elements and results obtained using the FDTD
technique [12]. It can again be seen that there is good
agreement between the methods of better than 1% in the
absolute resonant frequency and excellent agreement in
the coupling coeflicient. It is noted that, due to the small
size of the enclosure, there is interaction between the
resonators and the box which results in the plots of the
resonant frequencies of the even and odd modes crossing
when the resonators are widely separated.

THE ANALYSIS OF AN EpGE CoUPLED BAND
Pass FILTER

Consider the filter shown in Fig. 6. In the literature
results for this filter are available from measurements per-
formed by Shibata et al. [11], from a quasi-static analysis
and from a rigorous analysis based on Bergeron’s method
[11]. In addition results are available from a rigorous
analysis based on the FDTD method [12]. This structure
has been analyzed using the present method in order to
assess the efficiency and accuracy obtainable.

The analysis is approached in three stages.

1) The transverse current distribution on the three mi-
crostrip lines is pre-calculated. This is carried out using a
2-D version of the technique. From this we get the trans-
verse current distribution in the form shown in (10).

iil) We now consider the microstrip resonator in isola-
tion and we use the technique to calculate the longitudinal
current distributions corresponding to the first few reso-
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Fig. 6. (a) Plan of boxed edge-coupled bandpass filter. (b) Elevation of
boxed filter. [, = 6.36 mm, [, = (b/2) = 8.48 mm, @ = 11.62 mm.

nant modes. In this calculation we use the transverse cur-
rent distribution derived in step 1. The resulting current
distributions are shown in Fig. 7. These form the basis
functions, ¥, (r) in (10), used to describe the microstrip
resonator in the next stage.

iii) Now the complete structure is analyzed. The trans-
verse current distribution on the feed lines is assumed to
be the same as that obtained in stage 1 and the current
distribution on the resonator is expanded as a linear com-
bination of the functions, obtained in stage 2. Note that
only 3 basis functions (@ = 3 in (10)) are required to fully
describe the strip resonator over the frequency range of
interest. Moreover, if we wished to consider an n element
filter we would require only 3# basis functions. Moreover
stages one and two need be carried out only once per res-
onant structure.

In total, 67 basis functions (P = 67 in (9)) are required
for the structure shown in Fig. 6. In contrast to this, 333
rooftop functions would be required in the basic method
for equivalent accuracy. This allows a large saving in
computation time per frequency. The run time on a Gould
NP1, using non-optimized code, of approximately 15 min
to calculate Z®, (8), and a further 80 s to calculate
S-parameters at each spot frequency was measured. These
computer times indicate that it is entirely practicable to
carry out optimization on a multi-stage filter.

Fig. 8 shows the results, which we have obtained, for
mag [S21] plotted against frequency. For comparison the
measured results of Shibata et al. [loc cit] for the corre-
sponding open structure are also plotted. A frequency
shift, from the measured reference, of approximately 0.1
GHz is evident and also a higher predicted rejection be-
low 4 GHz. The offset in the resonant frequencies is due
to the fact that the shielding enclosure is not taken into
account in reference [11]. To show that these discrepan-
cies are indeed due to the shield walls we calculated the
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Fig. 9. S-parameter |S21| for edge coupled filter—comparison with FDTD.

S-parameters for both open and partially shielded (cover
and side walls only) structures using the FDTD method
[12]. Fig. 9 shows a plot of mag [S21] over the frequency
range 3 GHz to 6 GHz, which includes the first resonant
peak. The results predicted by the FDTD for the open
structure is close to the measured [11] whereas the cor-
responding results for the shielded structure agrees more
closely with the predictions of this research. Any further
discrepancies could be explained by the proximity of the
end walls which are not included in the FDTD model or
the measurements, and by the limited frequency resolu-
tion available from the FDTD model.

CONCLUSION

We have shown that realistically complex microstrip
circuits can be rigorously analysed on a small computer
by means of the spectral domain technique in combination
with pre-computed basis functions and the use of the
asymptotic forms of the Green’s function and the FFT
algorithm. The results compare well with published mea-
surements and with calculations using the FDTD method.

APPENDIX
CALCULATION OF THE ASYMPTOTIC Z MATRIX

The rooftop basis functions can be expressed as fol-
lows:

1—|x—x|/L x,-L<x<zx,+1

Jon (%, y) =
W= <y<y +1
=0  otherwise \
@, ) =1y =wl/l, x - L<x<x+]

y,,-—ly<y<y,,+ly

0 otherwise

il

where x,, y, are the coordinates of the center of the nth
element and /,, [, are the sizes of each finite element.
Their two dimensional discrete fourier transforms are

- 4

Jo(n, m) = m Cos ax,(1 — Cos al,)
* Sin By, Sin B,

- 4

Jyu(n, m) = —5— Cos By, (1 — Cos Bl,)

of’l,
- Sin ax, Sin al,

where « = nw/aand 8 = mn /b.
Now:

Z?; = Z th(n’ m) Jis(n> m, xs, ys) th(na m, x, y,)

where i and j represent the directions x or y depending on
which component of the dyadic is required and the com-
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ponents of the asymptotic Green’s dyadic is given by [8]:

ko ‘e 8%k3 o?

Zo % 2’ + B2 (@ + BV + 6
kg o

Zy 7 @+ )0+ e

ko ~ o’k g?

2, Y 2@+ By @+ BT+ o

Taking the first quadrant of Z®, which corresponds to the
xx component of the dyadic, as an example we get:

Z3 =4 2Py, Yoo % Y)( Qe (1, m) + Qo m))

where
P = Cos ax, Sin By, Cos ax, Sin By,
4 2 Q2 o
Ou1 = R (1 — Cos al,)” Sin” BI,K 3 (a, B)
4 2 Qin2 ®
Qxx2 = 5573 (1 — Cos Ollx) Sin BlnyxZ(a’ B)
o Bl
o 62 © = —————a2
STy M T T

Rearranging we have
P = 0.25(Cos a(x; + x,) + Cos a(x, — x,))
* (=Cos B(y; + y1) + Cos B(y; — ¥1))

and Z7; is given by

+ +
nTU, Cos Vst

- <Z — Q. (n, m) Cos 08
a b

mmwuvg
b

+
uSt

+ 2 O (n, m) Cos n7; Cos

+
mwuvy

b

mmvg
b

mwv,
b

— 2 0,,(n, m) Cos ITst Cos
a

+ 22 Q. (n, m) Cos BTt Cos
a

+
Ty

Jm<2 — Qus(n. m) Cos = L Cos

mmvy
b

nTu

+ 2 Qrn(n, m) Cos Cos

muv,
b

— 22 Q.n(n, m) Cos mzl” Cos

+ 21 Q,n(n, m) Cos Tt Cos m7;vs,>
a

where u; = x, + X, Uy = Ys t Vi
Joa = k§/2 Joo = —1/(1 + ¢

and
G;; = Jxlexxl + Jxx2hrxx2

This is the sum of four terms each of the two dimensional
discrete fourier transforms of Q(n, m) and Q,(n, m) pro-
vided that

vEN + 1

ur (N + 1)
———— = and
a b

are integers for all s and ¢.
In a similar manner we find the other quadrants of Z as

follows:
Zy, is given by

Lt +
Ty <Z — Q,y(n, m) Cos "= Cos ””;””
a
o -
+ 2 Q.,(n, m) Cos Il oog T st
a b
- +
— 2J 0, (n, m) Cos Tt o XMt
a b
+ 2 Q,,(n, m) Cos IT8st Cos mm}”)
a b
Z,, is given by
" +
T <Z = Qyy1(n. m) Cos == Cos "2

+ —
nmu mrv
+ 25 Q)1 (n, m) Cos —* Cos 5 s’
a

AUy Cos mwv;
a b

~ 25 Q,,1(n, m) Cos

a b
mwv,
b

mmwvg

b

U, mrv,,
+ 2 Q,y1(n, m) Cos % Cos S’>

+
Uy

"Ton <Z — Q,n(n, m) Cos Cos

+
U g

+ 2 Qyo(n, m) Cos 1 ;
4

Cos

mrv,;

b

mwvg
b

nTUg

- Oyy2(n, m) Cos Cos

+ 2 Q,5(n, m) Cos 2755 Cos
a
where

Jo, = k3/2

Xy
-— 4 ',
O = a3—531)cl—y (1 — Cos al,) Sin BI,(1 — Cos Bl,)

- Sin al, K3 (at, B)

ek
- (012+52)1/2
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Jor = —k3/2 Jpp =1/(1 + ¢
4 2 Qa2 @ ’
Oy = ——-~a26412 (1 = Cos p1,)" Sin” al Ky, (a, B)
y
4 ’ 2 Qa2 0
QO = W (1 — Cos Bl,)" Sin” al,KypH(c, B)
y
2 S 2
® o w B
Koy =——55, ad Ky =

(@ + B2/ (o} + g)/?

Thus, by calculating the two dimensional FFT of the five
functions @, which are independent of the metallisation
of the circuit under investigation, we may speedily. cal-
culate all the elements of Z*.
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